Discipline: Actual problems of chemistry of polymer composites

Lecture 6.

Theme: Additives for Polymer Composites

Objective:

To understand the types, roles, and effects of additives in polymer composites, and how they modify mechanical, thermal, and functional properties of the final material.

Key Questions:

- 1. What are additives in polymer composites?
- 2. What types of additives are commonly used?
- 3. How do additives influence the processing and properties of composites?
- 4. What are the main considerations when selecting additives for a composite system?

Lecture Content:

• Definition:

- Additives are non-reinforcing substances incorporated into polymer composites to enhance or modify properties, improve processability, or reduce cost.
- They do not primarily carry load like fibers or particles but **influence performance**, **durability**, **and functionality**.

Main Types of Additives:

1. Plasticizers:

- Increase polymer flexibility, toughness, and processability.
- Reduce glass transition temperature (Tg) and viscosity during processing.
- Examples: phthalates, adipates.

2. Stabilizers:

- Prevent degradation due to heat, light, or oxidation.
- Include antioxidants, UV stabilizers, thermal stabilizers.
- Essential for long-term performance and stability of composites.

3. Flame Retardants:

• Reduce flammability and slow down combustion.

• Types: halogenated, phosphorus-based, mineral (e.g., aluminum hydroxide).

4. Fillers:

- Non-reinforcing fillers can reduce cost, improve dimensional stability, and modify thermal or electrical properties.
- Examples: talc, calcium carbonate, silica.

5. Coupling Agents / Compatibilizers:

- Improve adhesion between matrix and reinforcement, enhancing mechanical performance.
- Examples: silanes, maleic anhydride-grafted polymers.

6. Colorants / Pigments:

- Provide color or opacity to composites.
- Can also offer UV protection and aesthetic appeal.

7. Processing Aids:

- Reduce melt viscosity, prevent sticking, and improve flow during molding or extrusion.
- Examples: lubricants, surfactants.

8. Antimicrobial and Functional Additives:

- Provide antibacterial, antifungal, or self-cleaning properties.
- Used in medical, food, and hygiene applications.

• Effects on Composite Properties:

- Additives can enhance mechanical, thermal, chemical, and barrier properties.
- o Influence processability, durability, cost, and safety of composites.
- Selection depends on matrix type, reinforcement type, processing method, and application requirements.

Applications:

- o Automotive: flame retardants, fillers, stabilizers.
- o Electronics: thermal stabilizers, conductive fillers.
- o Construction: UV stabilizers, flame retardants, fillers.
- o Medical and packaging: antimicrobial additives, plasticizers.

Key Short Theses:

- 1. Additives are **non-reinforcing substances** used to modify or enhance composite properties.
- 2. Main types: plasticizers, stabilizers, flame retardants, fillers, coupling agents, colorants, processing aids, and functional additives.
- 3. Additives influence mechanical, thermal, chemical, barrier, and aesthetic properties.
- 4. Proper selection of additives improves processability, durability, safety, and functionality of composites.

5. Additives are critical for tailoring composites to **specific applications and performance requirements**.

Control Questions:

- 1. What is the role of additives in polymer composites?
- 2. Name and describe the main types of additives used in composites.
- 3. How do plasticizers affect polymer properties?
- 4. Why are stabilizers important in polymer composites?
- 5. What is the function of coupling agents or compatibilizers?
- 6. Give examples of functional additives and their applications.

Recommended references

Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.
- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, 2012. 829 p.
- 5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. Almaty: Kazakh University, 2016. 175 p.

Additional literature:

- 1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. Tomsk: Publishing house of Tomsk Polytechnic University, 2013. 118 p.
- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.
- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.
- 4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. M.: Logos, 2006. 397, [3] p. (New University Library).